Synaptic protein UNC-13 interacts with an F-box protein that may target it for degradation by proteasomes.

نویسندگان

  • Cristina Polinsky
  • Chanelle Houston
  • Jaynine Vado
  • Azizahmed Shaikh
  • Rebecca E Kohn
چکیده

UNC-13 protein participates in regulating neurotransmitter release. In Drosophila melanogaster, proteasomal degradation controls UNC-13 levels at synapses. Function of the amino-terminal region of a 207 kDa form of Caenorhabditis elegans UNC-13 is unknown. Yeast two-hybrid and secondary yeast assays identified an F-box protein that interacts with this amino-terminal region. As F-box proteins bind proteins targeted for proteasomal degradation, this protein may participate in degrading a subset of UNC-13 proteins, suggesting that different forms of UNC-13 are regulated differently. Yeast assays also identified an exonuclease, a predicted splicing factor, and a protein with coiled-coil domains, indicating that UNC-13 may affect RNA function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin.

unc-13 mutants in Caenorhabditis elegans are characterized by a severe deficit in neurotransmitter release. Their phenotype is similar to that of the C. elegans unc-18 mutation, which is thought to affect synaptic vesicle docking to the active zone. This suggests a crucial role for the unc-13 gene product in the mediation or regulation of synaptic vesicle exocytosis. Munc13-1 is one of three cl...

متن کامل

Regulation of the UNC-18-Caenorhabditis elegans syntaxin complex by UNC-13.

The Caenorhabditis elegans unc-13, unc-18, and unc-64 genes are required for normal synaptic transmission. The UNC-18 protein binds to the unc-64 gene product C. elegans syntaxin (Ce syntaxin). However, it is not clear how this protein complex is regulated. We show that UNC-13 transiently interacts with the UNC-18-Ce syntaxin complex, resulting in rapid displacement of UNC-18 from the complex. ...

متن کامل

An evolutionarily conserved presynaptic protein is required for isoflurane sensitivity in Caenorhabditis elegans.

BACKGROUND Volatile general anesthetics inhibit neurotransmitter release by an unknown mechanism. A mutation in the presynaptic soluble NSF attachment protein receptor (SNARE) protein syntaxin 1A was previously shown to antagonize the anesthetic isoflurane in Caenorhabditis elegans. The mechanism underlying this antagonism may identify presynaptic anesthetic targets relevant to human anesthesia...

متن کامل

The F-Box Protein MEC-15 (FBXW9) Promotes Synaptic Transmission in GABAergic Motor Neurons in C. elegans

Ubiquitination controls the activity of many proteins and has been implicated in almost every aspect of neuronal cell biology. Characterizing the precise function of ubiquitin ligases, the enzymes that catalyze ubiquitination of target proteins, is key to understanding distinct functions of ubiquitination. F-box proteins are the variable subunits of the large family of SCF ubiquitin ligases and...

متن کامل

Open Syntaxin Docks Synaptic Vesicles

Synaptic vesicles dock to the plasma membrane at synapses to facilitate rapid exocytosis. Docking was originally proposed to require the soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) proteins; however, perturbation studies suggested that docking was independent of the SNARE proteins. We now find that the SNARE protein syntaxin is required for docking of all vesic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 53 1  شماره 

صفحات  -

تاریخ انتشار 2006